Cavi coassiali Cavel serie WL, wireless

CARATTERISTICHE E PUNTI DI FORZA

I cavi coassiali Cavel serie WL, impedenza 50 ohm, 100% Made in Italy, sono molto flessibili e garantiscono una frequenza di lavoro fino a 5,8 GHz. La gamma è composta da 5 modelli con ø esterno da 4,95 a 12,70 mm.

La Serie WL di Cavel, impedenza 50 ohm, è composta da 5 modelli con diametro esterno da 4,95 a 12,70 mm. Sono cavi coassiali che offrono un rapporto prezzo/prestazioni conveniente, almeno per tre motivi: elevata flessibilità, perdite di attenuazione minime ed elevata schermatura.

La disponibilità di una **gamma di connettori dedicati**, composta da venti modelli, garantisce una posa alla regola dell'arte; l'esperienza ci insegna, infatti, che l'accoppiamento perfetto fra cavo e connettore determina la costanza di prestazioni nel tempo.

Nel QR Code
Sito Cavel, pagina
dedicata ai cavi
coassiali RF

La serie WL è composta da 5 modelli, diametro esterno da 4,95 a 12,70 mm.

TARGET - A chi è utile?

I cavi coassiali serie WL vengono utilizzati per distribuire segnali RF sia a bassa frequenza, tipicamente da 50 MHz, sia ad alta frequenza, fino a 3 GHz. Come vedremo nel box dedicato, vengono utilizzati con soddisfazione anche per veicolare i segnali della telefonia cellulare, per tratte di cablaggio fino a 70 metri. Fra le altre applicazioni ricordiamo:

- **Reti wireless**. Internet senza fili (WISP) e punto/punto, reti cercapersone;
 - RFID, controllo accessi;
- Comunicazioni in-building. Sistemi dedicati di comunicazione all'interno di edifici, tunnel, cantieri, grandi opere);
- *Ferrovie*. Sistemi di trasmissione e controllo:
- *Telemetria*, rilevazione a distanza di dati operativi e misure;
- **Reti SCADA**, sistemi informatici distribuiti per monitoraggio e supervisione;
 - Wireless M2M, Machine-to-Machine;
- *Militare e Difesa*. Applicazioni, sistemi e soluzioni

PUNTI DI FORZA - Qual è il valore differenziante?

Fra le caratteristiche distintive evidenziamo:

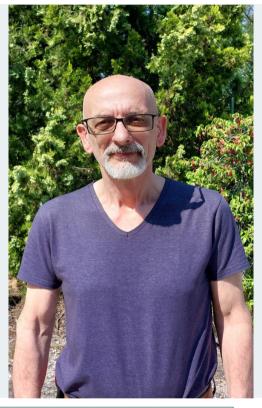
- Ottima flessibilità per la presenza del dielettrico espanso a gas. Questa caratteristica permette all'installatore anche di velocizzare il montaggio del connettore risparmiando tempo;
- Minori perdite per attenuazioni a parità di lunghezza di tratta rispetto ai cavi RG con diametro equivalente del conduttore centrale;
- **Schermatura elevata** per la presenza del nastro in alluminio multistrato associato alla treccia flessibile;
- Dielettrico flessibile in polietilene espanso a iniezione di azoto con basso tasso di degrado nel tempo, assorbimento nullo di umidità con tamponante / nastro incollato, elevata velocità di propagazione (80%).
- Schermatura flessibile ad alte prestazioni per il nastro di alluminio multi-strato associato alla treccia flessibile;
- Tre tipo di guaina diversi: in polietilene nero per aumentare l'impermeabilità, per posa interrata ed esterna; in PVC per una maggiore flessibilità e maneggevolezza in fase di installazione interna; LSZH (Low Smoke Zero

Halogen) che, in caso di incendio, ritarda la fiamma e non emette fumi neri, tossici per l'uomo e corrosivi per gli apparati.

Gamma di connettori dedicati

Cavel distribuisce una gamma di connettori N e SMA, sia maschio che femmina, dedicati alla serie di cavi coassiali WF. Sono venti modelli diversi, specifici per i cavi WL195, WL240, WL300, WL400 e WL500, con tutti i tipi di guaina.

La banda passante per tutti i modelli si estende fino a 6 GHz e il conduttore centrale, a crimpare, è in ottone placcato oro.


I connettori Cavel dedicati ai coassiali serie WL.

IL PARERE DI ELIO GIGANTE TITOLARE DI ELIKA SERVICE

«Realizziamo numerosi impianti che estendono la presenza del segnale di telefonia cellulare in aree dove questi segnali non sono presenti e per il cablaggio degli apparati utilizziamo solo i cavi coassiali serie WL di Cavel. Questa tipologia di impianti presenta criticità importanti: la scelta di un cavo di alta qualità è fondamentale per garantire all'impianto affidabilità e costanza di prestazioni nel tempo. Sul mercato, in effetti, ci sono cavi anche più economici e tecnicamente simili ma noi abbiamo fatto una scelta e non consideriamo l'ipotesi di utilizzare i cavi in rame/alluminio perché sono cavi che non riteniamo affidabili. La posa è critica e quando pieghi un cavo di questo tipo e successivamente lo raddrizzi modifica la sua impedenza perché l'alluminio si deforma. Invece, i cavi in rame non hanno questo problema; è vero che pesano di più e costano di più, sono meno comodi da gestire, ma quando l'hai infilato nelle canaline te lo dimentichi.

Entrando nello specifico, noi utilizziamo due diversi diametri di cavi: il WL400 (ø 10,30 mm) per le tratte fino a 70 metri e il WL300 (ø 7 mm) per le tratte fino a 30 metri. Le frequenze in gioco si estendono da 700 MHz fino a 2,6 GHz, ossia la banda di lavoro dei ripetitori BTS.

I connettori dedicati sono molto comodi da usare; si possono crimpare oppure saldare; noi preferiamo la crimpatura perché in molti contesti è più pratica ma anche la saldatura è un'opzione interessante per i risultati qualitativi che garantisce. Anche il tubetto da infilare sulla guaina è della lunghezza corretta per evitare che il cavo si sposti, anche di pochissimo, quando il cavo viene piegato».

CAVEL CAVI COASSIALI 50 OHM SERIE WL	CARATTERISTICHE COSTRUTTIVE											CARATTERISTICHE ELETTRICHE					
	Conduttore interno		Dielettrico		Schermo		Treccia			Guaina esterna	o di n	Attenuazione dB/100			SRL dB		Attenuazione di schermatura
	Materiale	Diametro mm	Materiale	Diametro mm	Materiale	Copertura %	Materiale	Copertura treccia	Diametro mm	Diametro mm	Minimo raggio curvatura 1/n	50 MHz	450 MHz	2.000 MHz	470÷1.000 MHz	1.000÷2.000 MHz	q
WL195	Cu	1,00	PEG	2,80	APA	100%	CuSn	82%	3,38	4,95	25/50	8,00	22,70	49,80	>28	>26	>90
WL240	Cu	1,40	PEG	3,80	APA	100%	CuSn	77%	4,38	6,10	31/61	6,00	16,90	37,30	>28	>26	>90
WL300	Cu	1,80	PEG	4,80	APA	100%	CuSn	84%	5,57	7,60	38/76	4,10	12,80	28,60	>28	>26	>90
WL400	Cu	2,70	PEG	7,20	APA	100%	CuSn	82%	7,97	10,30	52/103	2,60	8,70	19,30	>28	>26	>90
WL500	Cu	3,40	PEG	9,40	APA	100%	CuSn	78%	10,17	12,70	65/130	1,90	6,60	15,40	>28	>26	>90